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1
EXTRACTING STREAM GRAPH
STRUCTURE IN A COMPUTER LANGUAGE
BY PRE-EXECUTING A DETERMINISTIC
SUBSET

FIELD

The present application relates generally to computers, and
computer applications, and more particularly to program-
ming languages and compilers.

BACKGROUND

The end of frequency scaling has driven computer archi-
tects and developers to parallelism in search of performance
improvements. Since multi-core processors can be inefficient
and power-hungry, many have turned to specialized accelera-
tors including GPUs and other architectures such as program-
mable architecture. For example, the importance of power
dissipation makes the compilation of applications directly
into reconfigurable hardware (Field-Programmable Gate
Arrays (FPGAs)) a potential commercial target. Compilation
of applications on a wide scale requires leveraging the skills
of current software developers. But there is a large gap
between the abstractions presented by high level program-
ming languages and those used in hardware design.

Reconfigurable hardware can deliver impressive perfor-
mance for some applications, when a highly static hardware
design closely matches application logic. Obligated to
express efficient static hardware structures, hardware design-
ers cannot currently employ abstractions using dynamic fea-
tures of modern programming languages.

BRIEF SUMMARY

A method for extracting a stream graph for a hardware
circuit from a program written in a programming language, in
one aspect, may comprise receiving a program. The method
may also comprise analyzing the program for one or more
constructs in the programming language that builds the
stream graph for programming the hardware circuit. A node
in the stream graph represents a computation to be performed,
the computation expressed in the programming language. An
edge in the stream graph represents data flowing from the
node to another node in the stream graph. The method may
also comprise outputting one or more artifacts representing
the stream graph. The stream graph can be compiled for the
hardware circuit to execute and produce a result with different
node initialization values and different streaming data values
that are presented in an execution of the program not known
atcompile time. The stream graph can be built using recursive
computation and the connectivity of the stream graph can be
arbitrary.

A system for extracting a stream graph for a hardware
circuit from a program written in a programming language, in
one aspect, may comprise a programming language compiler
operable to execute on a processor and further operable to
analyze a program for one or more constructs in the program-
ming language that builds the stream graph for programming
the hardware circuit, a node in the stream graph representing
a computation to be performed, the computation expressed in
the programming language, and an edge in the stream graph
representing data flowing from the node to another node in the
stream graph. The programming language compiler may be
further operable to output one or more artifacts representing
the stream graph. The stream graph can be compiled for the
hardware circuit to execute and produce a result with different

10

15

20

25

30

35

40

45

50

55

60

65

2

node initialization values and different streaming data values
that are presented in an execution of the program not known
at compile time. The stream graph can be built using iterative
computation and the connectivity of the stream graph can be
arbitrary.

A computer readable storage medium storing a program of
instructions executable by a machine to perform one or more
methods described herein also may be provided.

Further features as well as the structure and operation of
various embodiments are described in detail below with ref-
erence to the accompanying drawings. In the drawings, like
reference numbers indicate identical or functionally similar
elements.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a flow diagram illustrating a method ofthe present
disclosure in one embodiment for extracting a stream graph
from a program written in a programming language.

FIG. 2 shows an example pipeline to evaluate a polynomial
in one embodiment of the present disclosure.

FIG. 3 is a flow diagram illustrating a compiler method in
one embodiment of the present disclosure for extracting a
stream graph.

FIG. 4 illustrates a schematic of an example computer or
processing system that may implement a programming lan-
guage compiler system in one embodiment of the present
disclosure.

DETAILED DESCRIPTION

Designs for reconfigurable hardware may involve dataflow
graphs (also known as stream graphs). Each node of such
graph encapsulates a computation and the nodes exchange
data over wires and queues. In software, languages like Java
can be used to express what should happen inside the nodes.
Such languages would also be usable to express all possible
connections of nodes by simply making this interconnection
“executable” (delayed until runtime). However, compilation
to FPGAs (in the near term) is very time-consuming and
hence the graph structure should be known at compile time
rather than at runtime.

A methodology and a system may be provided for design
and implementation of new features in a programming lan-
guage that admit construction of stream graphs of arbitrary
shape using an imperative, object-oriented language. In such
a programming language, a programmer may mark compu-
tations destined for hardware, and the compiler of the pro-
gramming language statically checks these computations for
repeatable structure. The repeatable structure may be
extracted as the static structure needed for hardware synthe-
sis.

A methodology in one embodiment of the present disclo-
sure, may analyze deterministic computations in a program-
ming language. An example of a programming language is
Lime (Liquid Metal language). If all inputs to a deterministic
computation are compile-time constant, the result of deter-
ministic execution is repeatable. In one embodiment, a meth-
odology of the present disclosure may apply a process of
ensuring and snippet evaluation to make a stream graph struc-
ture (for hardware design) available for ahead-of-time com-
pilation. Ensuring may include checking the stream graph
construction for repeatability. Snippet evaluation (compile-
time evaluation of portions of the program) may be applied to
ensured stream graph construction expressions to find the
necessary information to drive ahead-of-time compilation. A
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methodology of the present disclosure in one embodiment
may also improve the kinds of stream graphs that can be
extracted by relaxing the repeatability requirement so that
each node of the graph can have an initialization expression
that is not repeatable.

Language constructs may be provided that allow a pro-
grammer to use an object-oriented language technique to
construct stream graphs, yet still allow the compiler to extract
static shape information needed to compile to a reconfig-
urable processor (logic) such as an FPGA. The methodolo-
gies presented herein may be utilized in programming and
compiling hardware, and may also be useful in other domains,
for instance, which would benefit from analysis of complex
static structures built with general purpose language abstrac-
tion.

FIG.1is a flow diagram illustrating a method of the present
disclosure in one embodiment for extracting a stream graph
from a program written in a programming language. The
method may recognize a compile time graph structure
wherein the graph has arbitrary connectivity and is con-
structed using recursive computations. Arbitrary connectivity
means that any output of any node can be connected to any
input of any other node that is not otherwise occupied. There
is, specifically, no requirement that the graph be “planar” as in
some other similar systems. A planar graph is one that can be
drawn on a flat surface without any edge crossing any other
edge. The graph structure recognized at compile time may be
duplicated at runtime and can operate on runtime values not
known at compile time. In one aspect, a node in the compile-
time graph can be initialized with a value at runtime that are
not known to the compiler without affecting the repeatability
of the graph structure.

In a stream graph, the nodes represent computations to be
performed. The edges of a stream graph are labeled and
represent data flowing from one node to the next. The nodes
may be given values at the beginning of execution to initialize
their states (referred to as “node initialization™). Those values
usually are not known at compile time. Data “streams”
through the graph and comprises values not known at compile
time (referred to as “streaming data values”).

The programming language may have the following char-
acteristics: the computations to be performed in the nodes of
a stream graph are expressed in the programming language;
the executable steps to connect the nodes to each other are
expressed in the programming language and can include
recursive computations; the connectivity of the graph can be
arbitrary. Executable steps may include constructs of the lan-
guage that can be used in a program, for example, if/then/else,
do/while, subroutine calls, object constructions, etc. Those
constructs may be combined in any way to form the graph.

Referring to FIG. 1, at 102, a program is received. For
instance, a programmer may write recursive and iterative
programs to build graphs using a computer programming
language. An aspect of the present disclosure provides a sup-
port in the programming language for ensuring that graphs
can be built in a deterministic and repeatable fashion.

At 104, the program is analyzed. Computations that con-
struct the graph are evaluated and those that are repeatable are
identified. For example, isolation constructs of the program-
ming language may identify the computations that are repeat-
able. Those computations are executed at compile time. The
techniques of analyzing the program are described below.

At 106, artifacts representing one or more stream graphs
constructed by the program are output. Artifacts may include
“executable program elements.” For a program written to be
able to run on mixed hardware, artifacts may include Java
bytecodes (or the like) and native binaries to run on a general
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purpose processor, e.g., the main central processing unit
(CPU), and “bitfiles” (as they are called) or the like to be
loaded into the Field-Programmable Gate Array (FPGA) or
the like reconfigurable hardware logic. The stream graphs,
when compiled for suitable hardware, are capable of execut-
ing and producing a correct answer with all possible node
initialization values and all possible streaming data values
that may be presented in any execution of the program. The
stream graph so produced, may be the same graph that would
have been constructed at runtime; hence a methodology of the
present disclosure in one embodiment enables a complier of
the programming language to statically compile that graph
for reconfigurable processor or logic such as FPGA, e.g.,
achieve ahead-of-time compilation of the dataflow graphs for
reconfigurable targets.

An example of programmable architecture is reconfig-
urable hardware in the form of Field-Programmable Gate
Arrays (FPGAs). Compiling a program directly into hard-
ware eliminates layers of interpretation, which can dramati-
cally improve performance, power, or energy consumption.

FPGA developers rely exclusively on low-level hardware
description languages (HDLs) such as VHDL and Verilog.
These HDLs provide low-level abstractions such as bits,
arrays of bits, registers, and wires. With low-level abstrac-
tions and tools, FPGA development takes much more exper-
tise, time, and effort than software development for compa-
rable functions.

HDL designs derive their efficiency from hardware struc-
tures tailored to closely match application logic. The structure
of'a hardware design represents a dataflow graph, where each
node encapsulates some behavior, and the nodes exchange
data over wires and queues. An HDL design implements a
data flow graph by instantiating hardware modules and
explicitly connecting individual wires between modules.
These hardware structures must be static —the design must
fully elaborate all hardware structures at synthesis time, when
tools compile an HDL design to a binary circuit representa-
tion. Synthesis often takes hours to complete, and may entail
exploration of a configuration space of tuning options.

To improve programmer productivity describing data flow
graph computations, several software systems provide lan-
guage support for stream programming. Some streaming sys-
tems provide restricted, self-contained languages to describe
data flow graphs, so that their structure can be analyzed stati-
cally. Other approaches embed operators as first-class objects
in a general purpose language, without, however, enabling
static extraction of their structure.

Embedding streaming constructs in a general purpose lan-
guage has many advantages. Specifically, the programmer
can use the full power of the language to describe stream
graphs, exploiting modern language features and abstrac-
tions. For example, modern language features such as higher-
order functions and parameterized types allow the developer
to encapsulate design patterns in reusable libraries and soft-
ware components.

However, when compiling stream graphs to an FPGA, the
power of a general purpose language cuts as a double-edged
sword. Modern software patterns tend to abstract and obscure
structural information, which must be elaborated statically to
synthesize efficient hardware.

A number of previous projects have adopted streaming
programming abstractions for reconfigurable hardware.
These projects require a separate compile-time language to
express stream graphs often with restricted topologies. Cur-
rently, the inventors are not aware of any previous work that



US 9,104,432 B2

5

supports stream graphs as first-class objects in a modern,
general-purpose language, and yet still can compile efficient
hardware for an FPGA.

In the present disclosure, new features in a programming
language (e.g., Lime, a Java-derived language) may be pro-
vided, which combine the benefits of first-class streaming
language constructs with the ability to synthesize efficient
hardware. In this programming language, in one embodiment
of'the present disclosure, stream graphs are first-class objects
which can be manipulated with the full power of the language.
Briefly, in programming language design, a first-class object
refers to an entity that can be constructed at run-time, stored
in variables and data structures, passed as an argument or
parameter to a subroutine, returned as the result of a subrou-
tine.

In general, using a programming language, the program-
mer may to express graphs whose structure cannot be known
until run-time. However, the programmer can denote certain
graph expressions for relocation to hardware, in which case
the language enforces additional invariants using simple local
constraints based on compositional language features. When
a stream graph construction type-checks as relocatable, the
language guarantees that the compiler can extract static struc-
ture needed to synthesize efficient hardware. In one aspect, a
programming language/compiler co-design in the present
disclosure may allow for extracting a static structure, e.g.,
without aggressive program analysis and without symbolic
execution.

Inthe present disclosure, in one embodiment, the following
capabilities may be provided:

object-oriented language support is provided for first-class
stream graphs: tasks and stream graphs are first-class
entities in the language, allowing creation of rich struc-
tures and abstracting complex topologies into graph cre-
ation libraries;

repeatable expressions: an extension of compile-time con-
stancy to general expressions that admit mutable object
and complex data structures. Repeatable expressions
may be generalized and exploited to support extraction
of static graph structure;

relocatable task graphs: a simple syntactic construct to
denote stream graphs intended for hardware accelera-
tion. The compiler enforces type-checking constraints
(based on repeatability) which guarantee that it can
extract the required static graph structure for hardware;

implementation: a compiler may implement a limited par-
tial evaluator using Java bytecodes which is sufficient to
extract graph structures built using the full feature set of
the language (avoiding the need for symbolic execution
or aggressive program analysis); and

compilation into hardware: e.g., programming language
sufficient to express a variety of structured graphs, and
additionally can express irreducible graphs and incorpo-
rate unstructured imperative code into stream graph con-
struction routines.

Consider a simple example: a stream evaluator for a poly-
nomial. Given a polynomial f(x), when presented a stream of
inputs {x,, X, . . . }, the program should produce the stream
{f(xo), f(x,), . . . }. Assume a non-functional requirement: a
pipelined implementation is needed on an FPGA, which con-
sumes and produces one value per cycle.

The following algorithm shown in Table 1 is based on
Horner’s rule for evaluating a polynomial:
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TABLE 1

Inputs:
an integer
array of coefficients
Output:
Algorithm:
r=0
forie [0,...,n]:
r=r*x+a,
return r

FIG. 2 shows an example pipeline to evaluate f(x)=x>-
3 +4x+7.

Consider the polynomial f(x)=x>-3x*+4x+7. FIG. 2 shows
the structure of a pipelined implementation to evaluate f(x)
according to Horner’s rule. Each pipeline stage performs one
multiply-add, which is assumed to be synthesized in one
cycle. If presented one value x per cycle, this pipeline pro-
duces one value {(x) per cycle.

The following describes how one could express this stream
graph in a programming language that produces hardware
code. The following description refers to the Lime program-
ming language with reference to the methodologies of the
present disclosure. However, it should be understood that the
methodologies may apply to another programming language,
which for example, provide similar capabilities.

Stream Graphs in Lime

Lime is based on the Java Programming Language, but
adds a number of constructs to express invariants helpful
when compiling programs to hardware. Here, those Lime
constructs needed to understand the example above are
described.

Briefly, the Lime type system includes various types that
enforce immutability and restrict side effects. In one aspect,
any method marked with the local qualifier has no side effects
and can be considered a pure function. Additional, the Lime
tuple types may be used: the syntax ‘(x,y,z) indicates a tuple
with three elements, and the syntax ‘(int,int,int) specifies the
type meaning “tuples of three integers”. Lime supports type
inference for local variables; the programmer can elide the
type in a local variable declaration, and simply use “var” or
“final”instead.

Lime supports a streaming dataflow programming model;
a Lime program constructs a stream graph by creating tasks
and composing them into an acyclic graph. A Lime program
applies the task operator to a “method description” to produce
a Lime task, a node in a stream dataflow graph.

The full Lime language supports a number of syntactic
forms for method descriptions, which correspond to instance
methods, and support object state for stateful tasks. The fol-
lowing descrbies stateless Lime tasks constructed from static
methods. However, all the concepts presented in the present
disclosure may translate naturally to the full Lime language,
including stateful tasks.

Definition 1: (Task Construction) Let TO Foo.m(T1, . . .,
Tk) be the signature of a static method m declared on class
Foo, which takes parameters of types T1 through Tk, and
returns a value of type TO. If all of the types TO . . . Tk are value
types, then the expression task Foo.m(T1, . .., Tk)
is a task construction expression.

If the signature without parameter types Foo.m is unam-
biguous, then task Foo.m is accepted as shorthand for the full
signature.

A task construction constructs an object of type Task,
which represents a node in a stream graph. The constructed
task takes k inputs, whose types are T1 through Tk. If TO is
void, the task returns zero outputs. If TO is a tuple type of
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cardinality m, the task produces m outputs with types corre-
sponding to the tuple components. Otherwise the task pro-
duces one output of type TO. Each time it activates, the con-
structed task consumes inputs, applies the pure function
represented by method m, and outputs the result.

Task is an abstract type—the language provides subclasses
of Task that describe its shape. For example, class Filter <IN,
OUT> extends Task is a commonly-used subtype, that
describes a task that consumes an input of type IN and pro-
duces an output of type OUT. Task and all its subclasses are
value types.

The program can eagerly bind (curry) one or more input
arguments to a task, by specifying the bound values in the task
construction expression. The curried expression is evaluated
once, at task initialization time.

Definition 2: (Task Initializer) Let t=task Foo.m(T1, . . .,
Tk) be a valid task construction. Let e be a valid expression of
type Tj for 1=j=k. Then the expression t' which substitutes e
forTjint,
task Foom(T1, ... e, ... Tk),
is a valid task construction. In t', e is called a task initializes.
The meaning of t' is the same as t, where the value of the j th
parameter is statically bound to the value of e.

Lime programs compose tasks into simple stream graphs
using the connect (=>) operator. If t; and t, are tasks, the
expression t,=>t, describes a stream graph where the outputs
of't; flow to the inputs of't,.

Table 2 shows a Lime code to construct the pipeline to
evaluate the polynomial f(x)=x>-3x>+4x+7.

TABLE 2

static local ~(int, int) ingress(int x) { return (x, 0); }
static local int egress(int x, int r) { returnr; }
static local - (int, int) update(int %, int r, int coef) { return ’ (%, 1 * X + coef); }
var pipe = task ingress =>  task update(int, int, 1) =>
task update(int, int, —3) =>
task update(int, int, 4) =>
task update(int, int, 7) => task egress

The resultant pipeline matches the structure described in
FIG. 2. Each instance of the update task statically binds the
coef input to an appropriate integer coefficient value.

In Table 2, the structure of the stream graph, meaning its
shape and the implementation of each task, is static and
clearly evident from the code. When compiling to hardware,
the compiler elaborates this structure statically in order to
synthesize an efficient hardware design that produces one
value per cycle.

Polynomial Parser

Consider another example. Suppose one wishes to write a
library which can generate circuits for arbitrary polynomials,
represented by strings. In software, general purpose lan-
guages support this style of library. An abstract data structure
may be built that represents a polynomial, and an evaluation
engine may be built which interprets the data structure at
runtime. In the present disclosure, a similar library routine
may be written that generates Lime stream graphs.

Returning to the example, let’s represent a polynomial by
an array of int, so the polynomial f(x)=x>-3x+4x+7 corre-
sponds to int[ | £={1, -3, 4, 7}. A parse method that converts
a string representing a polynomial to an array of coefficients,
and a method pipeline that constructs a Lime task graph from
an array of integers may be built.

Table 3 sketches a simple implementation in Lime. Table 3
elides the details of the parse method, which implements
basic string processing using imperative operations.
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TABLE 3

value class string {...}
static int[ ] parse(string s) {...};
static Task pipeline(int[ ] coef) {
var pipe = task ingress;
for (int c: coef) {
pipe = pipe => task update(int,int,c);

return pipe => task egress;

nt[ ] f= parse(”xﬁ3 3% 2+ 4x+ 7"
var pipe = pipeline(f);

H O 0 R W= O

<

The Line code shown in Table 3 generates a pipeline to
evaluate a polynomial represented by an array of int.

The code in Table 3 correctly expresses the necessary logic
in Lime. However, in contrast to Table 2, the code in Table 3
does not mirror the structure of the resultant stream graph for
any polynomial. The structure of the stream graph depends on
the contents of a string (line 9), relatively complex imperative
parsing code (line 1), and a loop (lines 4-6) that constructs a
task graph.

The Lime runtime system may build and interpret this task
graph at runtime, running in software. When running in soft-
ware, the system can construct and interpret fully dynamic
graphs, at run-time. To exploit reconfigurable hardware, the
compiler uses more static information. To generate hardware
efficiently, the compiler may determine the structure of the
stream graph at compile-time.

To determine the structure of a stream graph for the poly-
nomial example, the compiler requires that the string (line 9)
which determines the polynomial be known at compile-time.
However, even when the string is known, extracting the
stream graph structure from Java code in Table 3 represents a
program analysis challenge. Effectively the compiler must
partially evaluate the stream graph constructor for a given
input, which carries all the inherent difficulties of binding-
time and side-effect analysis for Java.

The present disclosure in one aspect provides for a lan-
guage/compiler co-design that makes this problem tractable.
Language extensions, for example, Lime language exten-
sions may be presented to add, e.g., small but powerful, type
constraints that allow the compiler to extract the relevant
stream graph structure without intensive program analysis.
The language may remain sufficiently general to express rich
structured and unstructured stream graphs.

TABLE 4

value class string { ...}
static local int[[ ]] parse(string s) {...};
static local Task pipeline(int[[ ]]coef) {
var pipe = task ingress;
for (int c: coef) {
pipe = pipe => task update(int,int,c);

return pipe => task egress;

final = parse(“xﬁ3 —3x2+4x+ 7
var pipe = ([ pipeline(f) );

=00 R W RO

<

Table 4 shows an example Lime code to construct the
pipeline using the new language extensions of the present
disclosure in one embodiment, e.g., similar code as in Table 3
enhanced with new Lime language constructs. The revised
code may rely on the following language (e.g., Lime) con-
cepts:

immutable arrays: The double bracket syntax (int[[ |]) indi-

cates an array whose contents are immutable. (lines 1,
2);
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values: A class marked as a value is deeply immutable.
Line O shows that the library class lime.lang.string is a
value class. Instances of value classes and immutable
arrays are called values.
local functions: A method marked as local (line 1) cannot
write to mutable static data. Thus, a static method must
be a pure function if the following conditions hold: i) it
is local, ii) all parameters are values, iii) it returns a
value.
repeatable expressions: Informally, any expression which
is composed from compile-time constants, value con-
structors, and pure function applications is considered
repeatable. The compiler can safely evaluate a repeat-
able expression at compile-time. In the example, the
expression parse (“x>-3x>+4x+7") is repeatable.

relocation brackets: An expression in relocation brackets,
e.g., (Eel) defines a stream graph, intended to be
executed on (i.e., relocated to) a specialized device such
as an FPGA or the like. In relocation brackets, e must
satisfy constraints that guarantee the compiler can
extract the relevant static graph structure.

In the present disclosure, repeatability is further general-
ized, and relocation brackets are provided as a additional
feature in the programming language.

The constraints involving relocation brackets and local
methods is described in more detail below. For this example,
it suffices to note that if the expression in relocation brackets
is repeatable, then it satisfies the constraints. In one aspect,
other scenarios may relax the restriction to increase expres-
sive power. That aspect is also described in more detail below.
In Table 4, the expression in relocation brackets at line 10 is
repeatable (the type Task returned by pipeline is a value type,
as is the argument, and the function is local).

In the present disclosure, language constructs are intro-
duced which allow the programmer to write a relatively com-
plex stream graph generating library, using all the imperative
facilities of Java or the like computer language. In order to
guarantee that the compiler can determine the relevant graph
structure statically, the present disclosure introduces simple
type constraints at the library boundary.

In one aspect, all the type constraints may be simple local
properties which can be checked in a modular fashion. Com-
pile-time evaluation of repeatable expressions would be inter-
procedural and arbitrarily complicated if done by conven-
tional means; however, the language design permits a simple
concrete evaluator to run at compile-time to evaluate repeat-
able expressions. No complex analysis is required.

The examples codes of Tables 1-4 are shown that can use
arbitrary imperative code to define stream graphs. While only
a simple pipeline graph structure is presented, the same
mechanisms work for all reducible graph structures, which
include operators to split and join dataflow tokens.

Irreducible Graphs

The well-known FFT butterfly stream graph for the deci-
mation-in-time FFT algorithm differs fundamentally from
the graphs considered previously in many streaming lan-
guages. The FFT butterfly graph is irreducible: it cannot be
expressed as a composition of pipelines, splits, and joins.

The present disclosure in one embodiment may extend a
programming language (e.g., Lime) with the ability to define
stream graphs with manual connections. The programmer
may be allowed to construct stream graphs with an unstruc-
tured graph construction application programming interface
(API), which allows arbitrary connections between tasks.

As long as the graph construction code obeys the con-
straints imposed by relocation brackets, the compiler can
extract the relevant structure, even for irreducible graphs
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created through the programmatic graph API. This property
holds even for recursive graph construction routines, which
arise frequently in complex graph construction logic.

This facility allows a programming language (e.g., Lime)
to express a richer graph language than previous streaming
languages, which are restricted to reducible graphs. An
enhanced programming language of the present disclosure in
one embodiment can statically extract complex graph struc-
tures such as systolic arrays and FFT, and compile the graph
structures to hardware.

Lime Preliminaries

The following illustrates some aspects of an example pro-
gramming language that may be enhanced with the capabili-
ties described above of building dataflows graphs for hard-
ware during compile time, in one embodiment of the present
disclosure.

Lime is a superset of Java, adding additional language
features to express parallelism and locality to exploit hetero-
geneous architectures. Lime language features utilized in the
present disclosure are reviewed below, before introducing the
new language contributions in subsequent sections.

Value Types

Lime introduces a category of value types which are immu-
table (like the primitive types) but are declared similarly to
reference types (with fields and methods). One merely adds
the value modifier to a type declaration to revise the semantics
and obtain additional checking to enforce deep immutability.
The fields of a value type are implicitly final and must them-
selves be value types. For example, Lime provides the library
type bit as a value enum with possible values zero and one.
The primitive types inherited from Java are redefined to be
value types. A special array declarator allows some arrays to
bevalues. The type bit[ | is amutable array of bits and the type
bit[[ ]] is an immutable array of bits (a value type).

The language defines a non-null default type for every
non-abstract value type and prohibits null values for such
types.

The construction rules for values prohibit cycles, so each
value represents a tree that can be linearized and passed-by-
value.

Local Methods

Lime introduces the local modifier on methods, which can
be used to enforce invariants regarding side effects and iso-
lation. The local meodifier asserts that a method does not
access mutable static fields, and only calls other local meth-
ods. Type checking these rules requires only simple intra-
procedural scanning.

The rules give no general guarantee that a local method is
free of side-effects, since it can modity instance fields in its
receiving object or mutable objects reachable from method
arguments. However, if a local method has only values as
arguments and return type, then it is easy to establish that the
method is pure.

Note that a local method established to be pure is not
obligated to call only pure methods. It is free to call methods
that are merely local, since any mutations that may occur
inside those methods must be limited to objects created in the
activation stack of the outermost local method. Any such
mutable objects must all die before the outermost method
returns, since the outermost pure method must return a value
and cannot write to mutable static data structures.

Local methods are allowed to read certain static fields (if
they are final and repeatable. Repeatable expressions are fur-
ther described in detail below.

Stream Graphs

The Lime task constructors and task initializers, which can
be used to build stream graph pipelines were introduced
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above. Lime also provides a set of system tasks called splitters
(one input, many outputs) and joiners (many inputs, single
output), which can be connected to form a rich set of possible
graph structures.

The multitask constructor task [t,, . . . , t,] constructs a
composite task having a vector of k tasks which are not
connected to each other. Instead, this composite task
takes a k-ary tuple as input and produces a k-ary tuple
output. The i th component in the input tuple flows to
task t,, which produces the i th component of the output
tuple.

LetT=(11, ..., tk) be a tuple type with cardinality k. Then
the constructor task split T creates a task that consumes
an input of type T, and produces k outputs, one for each
component of the tuple type. A splitter task splits a tuple
stream into individual streams for each component.

LetT=(11, ..., tk) be a tuple type with cardinality k. Then
the constructor task join T creates a task that consumes k
inputs, one for each component of the tuple type, and
produces a tuple of type T. A joiner task creates a stream
a tuples from streams of the individual components.

With connect, split, and join, Lime programs can construct

any acyclic reducible stream graph shape.

Manual Graph Connections

In order to express irreducible graphs such as the FFT

butterfly example described above, a programming language
(e.g., Lime) is extended to support construction of arbitrary
stream dataflow graphs.

TABLE §

value class Task {
Task named(string id);

value class TaskGraph extends Task {
TaskGraph add(Task t);
TaskGraph connect(Task src, int outPort, Task dest, int inPort);

}

Table 5 shows an API methods for the TaskGraph class,
which provides a programmatic interface for stream graph
construction. The TaskGraph.add method adds a task to a
graph, and the connect method connects an output of one task
to the input of another.

In one embodiment of the present disclosure, TaskGraph is
a value class—it is deeply immutable. Thus the add and
connect methods create a new TaskGraph value, and do not
mutate a graph in place. The immutability of tasks plays a key
role when reasoning about repeatability of task construction
code, described in more detail later.

Similarly, the Task class itself is also immutable. However,
in many complex graphs, such as systolic arrays, the program
must build up a network which contains many copies of a
particular task. In order to support this, each Task instance
may have a unique string identifier. The method Task.named
(string id) creates a new copy of a task, but with a different
string identifier. The string identifier dictates object identity
for task objects, which allows the programmer to distinguish
between copies of a functional unit when building complex
graphs.

TABLE 6

static local int twice(int x) { return 2*x; }
Task t = task twice;

Task a = t.named("a");

Task b = t.named("'b");

TaskGraph tg = new TaskGraph( );
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TABLE 6-continued

tg = tg.add(a);
tg = tg.add(b);
tg = tg.connect(a, 0, b, 0);

Table 6 shows program (e.g., Lime) code to build a graph
equivalent to task twice=>task twice. Although this simple
graph is reducible, it should be clear that a program can use
the TaskGraph API to build an arbitrary graph structure.

In one embodiment, a programming language (e.g., Lime)
may only accepts acyclic graphs. When the manually con-
structed portion of the graph is further connected using=>, the
result is checked for acyclicity. In general, this will result in a
run-time exception, but if the graph is being relocated, the
evaluation technique presented below finds the error at com-
pile-time.

Repeatability

Repeatable expressions in one embodiment extend the
notion of constancy to arbitrary expressions.

A repeatable expression has no side effects, can be evalu-
ated any number of times, and will always produce the same
result. The class of repeatable expressions are those built from
repeatable terms composed with pure functions.

Base Terms

The base repeatable terms (those containing no operations)
are a superset of the set regarded as “compile-time constant”
in Java. First, all literals of value types are repeatable. This
includes the primitive type literals defined in Java plus the
literals added by Lime for bits, ordinal types (discussed
below), value enums, and string literals.

Generalizing Java’s rule for constants, a simple name ref-
erence is repeatable if it is a reference to a final field or
variable that has an explicit repeatable initializer. A qualified
name reference (like Foo.a) is repeatable if it is a reference to
static final field that has an explicit repeatable initializer.

Built-In Operators

A programming language (e.g., Lime) includes a set of
built-in operators which represent pure functions. (e.g., +, —,
* %, /). If expression e has a pure operator applied to argu-
ments that are all repeatable, then e is repeatable.

User-Defined Functions and Types

In one embodiment of the present disclosure, the set of
repeatable expressions may be increased with two capabili-
ties not supported for constants in Java. First, the local invari-
ants may be exploited to reason about calls to user methods
that must be pure functions. So, a method invocation pro-
duces a repeatable result if the method is pure and all of its
actual arguments are repeatable.

Second, a value creation (with the new operator) may be
regarded as repeatable if the constructor is pure and all the
actual arguments are repeatable.

If e is a repeatable expression, and evaluation of e termi-
nates, then e evaluates to the same value in all possible execu-
tions. This can be shown by structural induction over the
forms of repeatable expressions.

Ordinal and Bounded Types

When compiling to an FPGA or the like reconfigurable
logic, the generated design must fit in limited physical
resources, and cannot exploit a virtual address space. For this
reason, the compiler should often be able to compute the size
of arrays at compile-time, in order to use scarce logic
resources efficiently.

To help the compiler reason about array sizes, a program-
ming language (e.g., Lime) may include bounded array types.
Informally, the type “int”, where N is an integer, represents an
array of exactly N integers. More generally, Lime supports
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ordinal types, where the type “ordinal N” represents the set of
non-negative integers i where i<N. Lime programs can use
ordinal types just like any other types in Java; in particular
they can be used as type parameters to generic methods.
Additionally Lime supports restricted constructs to convert
between ordinal types and integer values, so ordinal types
represent an extremely limited form of dependent integer
types. The rules for repeatability for integer values extend
naturally to define repeatability for ordinal types and type
parameters. With repeatable ordinal types and generics, the
Lime programmer can build task graphs recursively to
express divide-and-conquer algorithms for arrays.

TABLE 7
1 local static <ordinal N> int[[N]] sort(int[[N]] input) {
2 if (N.size > 1) {
3 final int HALF = N.size/2;
4 int[[HALF]] low = lowerHalf(input);
5 int[[HALF]] high = upperHalf(input);
6 low = MergeSort.<HALF>sort(low);
7 high = MergeSort.<HALF>sort(high);
8 return merge(low,high);
9 }else {
10 return input;
11 }
12 }
13 local static <ordinal N, ordinal M> int[[M]] merge(int[[N]] a, int[[N]]
b){..}
14 final int[[8]] a={4,6,2,8,9,4,3,12 };
15 final b = sort(a);

Table 7 sketches a recursive implementation of merge sort,
using ordinal type parameters. The type parameter N (line 1)
indicates the size of the input array. Note that the code con-
structs a new ordinal type HALF, used in the divide and
congquer recursion.

Observe that the type system ensures that sort is a pure
function. Thus, when sort is invoked on a repeatable input
(line 15), the type system ensures that all type parameters
used in the recursive expansion of sort are also repeatable.
Thus, the compiler can statically determine the bounds of all
arrays used in the call to sort at line 15. Furthermore, since
sort is pure, the result b at line 15 is also repeatable and can be
computed at compile-time.

Although Table 7 shows simple single-threaded code, the
same concepts apply when onstructing stream graphs from
generic methods with bounded array inputs and outputs. This
pattern arises frequently in stream graphs for Lime programs
on FPGAs. Repeatable bounded array types are a key feature
in being able to statically bound space usage in hardware
designs for complex stream graphs.

Repeatability Issues

Termination

Lime provides no guarantee that a repeatable expression
will terminate without throwing an exception, or even termi-
nate at all. However, the behavior (terminating or not) will be
reproducible, and can be monitored at compile-time. When
the compiler evaluates repeatable expressions, it checks for
exceptions and imposes a time out. Should evaluation not
terminate normally in a reasonable interval, the compiler
reports the failure as a compile-time error.

Determinism

Invariants for local methods and constructors guarantee
freedom from side-effects, but not necessarily determinism. It
may be assumed that such methods cannot contain any non-
deterministic operations. This assumption is true today in
Lime, because Lime has no core language constructs that are
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non-deterministic. The type system prevents local methods
from calling native code or across a foreign function inter-
face.

Generalizing Repeatability

The current definition of repeatability includes two prag-
matic compromises. First, it may be insisted (as with Java
compile-time constants) that any final fields must first have an
explicit initializer before it is considered whether that initial-
izer is repeatable. Second, qualified names like Foo.a may be
limited to the case where they denote a static field. It may be
possible to relax both restrictions.

Relocation Expressions

The following describes the language constructs in one
embodiment of the present disclosure that guarantee that the
compiler can extract static information about stream graphs,
needed in order to relocate a stream graph computation from
software onto an FPGA.

Relocation Expressions

Ifeis alanguage (e.g., Lime) expression, the syntax ([e]) is
introduced, which is called a relocation expression, using
“relocation brackets” syntax.

A relocation expression type-checks whether a) e is repeat-
able, or b) e satisfies additional constraints specific to unre-
peatable task initializers (Definition 2) for stream graphs.
Each case is discussed below and the additional constraints
which define case b) are explained.

If e is a relocation expression which generates a stream
graph, then the compiler guarantees that it can extract static
structural information (hereafter called stream graph struc-
ture) sufficient to enable hardware synthesis.

Definition 3 (Stream Graph Structure) Let g be an object of
type Task (i.e., a stream graph). A stream graph’s structure
may comprise:

1. the topology of the graph, a canonical form of its nodes

and connections,

2. for each edge, the type of all values that flow on it,

3. for each node, the Lime method providing its behavior,

and

4. for each method parameter of the previous, whether or

not it is curried (i.e., constructed via a task initializer as
per Definition 2).

For part 4 above, the actual value bound to the parameter is
not considered part of graph structure in one embodiment of
the present disclosure. Therefore, the stream graph structure
does not completely determine the function to be executed in
each node. The “code” is determined by part 3 above, the
curried signature is refined by part 4, but the task initializers
(see Definition 2) are still unknown.

Repeatable Stream Graph Expressions

When a stream graph expression is repeatable, the com-
piler can fully evaluate the expression, and walk the resultant
data structure to determine the graph structure. Implementa-
tion details in one embodiment of the present disclosure relat-
ing to the compile-time repeatable graph evaluator is
described below. An example of a repeatable graph is illus-
trated in the polynomial example described above.

Tasks are designed as immutable values, allowing to reason
about repeatability for library methods that produce and con-
sume Task objects.

As a simple example, consider:

static local Task connect(Filter<int,int> a, Filter<int,int>
b) {return a=>b;}

If one wants to use connect in a repeatable (or relocatable)
expression, then the type system must establish that connect
is a pure function. Recall that there is this guarantee for local
methods that produce and consume values. Thus Lime Task
objects are deeply immutable.
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Unrepeatable Task Initializations

In a pipelined implementation for polynomial evaluation
described above, the degree and coefficients to the polyno-
mial were static. In this case, both the stream graph structure
and all the task initializers are repeatable, so all the node
functions were completely determined. However, a method-
ology in one embodiment of the present disclosure can also
efficiently support hardware stream graphs where the stream
graph structure is repeatable, but the functions of individual
nodes in the graph depend on dynamic data provided through
unrepeatable task initializers. The present language exten-
sions to support this are now described.

Consider a variant of the polynomial pipeline for functions
of the form f{x)=a x’+a, x>+a,x+a,, where the degree of the
polynomial is fixed at 3, but the coefficients of the polynomial
are unknown at compile-time.

Intraprocedural Case

Table 8 shows a program (Lime) code to build a stream
graph for this problem. In this case, it is assumed that the
coefficient array a is not repeatable.

TABLE 8

Lime code to construct a pipeline to evaluate a 3rd-degree polynomial
f(x) = agx® + a,;%% + ayX + a3, where the coefficients a; are not
repeatable. Refer to Table 2 for definitions of update, ingress, and egress.

int[4] a = readFromInput( ); // assumed dynamic

var pipe = ([ task ingress =>  task update(int, int, a[0])
task update(int, int, a[1])
task update(int, int, a[2])
task update(int, int, a[3])
task egress])

o nu
VvV VvV

The relocated expression in Table 8 is not repeatable. To
allow this expression to type-check, the type-checking rules
may be relaxed.

For the moment, consider the subset of Lime which
excludes procedure calls.

Definition 4 (Relocatable Expressions (no calls)). A (legal)
Lime expression e is relocatable if and only if one of the
following holds:

1. e is repeatable

2. e is of the form task M.foo(pl, . . . pk),

3. e is of the form el=>e2 where both el and e2 are

relocatable

4. eis of the form task [el, . . ., ek] where each expression

e, is relocatable,

5.eis of the form splitel orjoin el, where el is relocatable

6. e is of the form el.add(e2) where both el and e2 are

relocatable

7.eisofthe form el.connect(e2,e3) whereel, e2 and e3 are

relocatable

Case 2 allows a relocatable expression to use unrepeatable
expressions as task initializers (recall Definition 2.1). This
case allows the stream graph in Table 8 to type check as
relocatable. Specifically, the unrepeatable coefficients a[i]
appear only inside expressions of the form task e.

This definition of relocatable constrains the code such that
the stream graph structure is repeatable, but the logic that
implements each user task in the graph can use runtime val-
ues. The system can implement this pattern efficiently in
hardware by laying out the stream graph statically, and laying
down wires to route the dynamic values to the appropriate
functions at runtime.

Interprocedural Case

Next, the definition of relocatable expressions may be
extended to support procedure calls, so stream graph con-
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structions can be encapsulated in a library, even when they
employ unrepeatable values as task initializers.

Table 9 shows the library method encapsulation for the
running example. Note that the expression in relocation
brackets at line 10 now contains a procedure call.

TABLE 9

Lime code to construct a pipeline to evaluate a 3rd-degree polynomial
f(x) = agx> + a,x2 + ayX + a3, where the coefficients a; are not
repeatable. Refer to Table 2 for definitions of update, ingress, and egress.

1 static local Filter<int,int> thirdDegree(task int a0, task int al,

2 task int a2, task int a3) {
3 return task ingress =>  task update(int, int, a0) =>

4 task update(int, int, al) =>

5 task update(int, int, a2) =>

6 task update(int, int, a3) =>

7 task egress;

8

9  int[4] a = readFromInput( ); // assumed dynamic

10 var pipe = ([ thirdDegree(a[0], a[1], a[2], a[3]) 1);

In one embodiment, additional type qualifiers are added
that pass constraints about relocatable expressions across
procedure boundaries, but still allow modular local type
checking. In one embodiment, the task keyword may be re-
used for this purpose —allowing the task keyword as a type
qualifier on formal parameters (lines 1 and 2 in Table 9).

When a task qualifier decorates a formal parameter p of a
method m, p is called a dynamic parameter. In one embodi-
ment of the present disclosure, there may exist only two legal
ways p can appear in expressions inside m:

1. In an expression task M.foo(pl, . . . pk), a dynamic
parameter p can appear as a bound value for a task
initializer pj.

2. p can be used as the actual parameter in a call, where the
corresponding formal parameter q in the callee is a
dynamic parameter.

Any other use of p may fail to type check in one embodiment
of the present disclosure.

In Table 9, each formal parameter of thirdDegree is dynamic,
but the method type checks because all uses of formal param-
eters in the procedure satisfy condition 1.

Definition 5 (Relocatable procedure calls) A procedure call
expression M.foo(p1, . . ., pk) is relocatable if and only if for
each j, 1sj=k,

pj is repeatable, or

the j th formal parameter of M.foo is a dynamic parameter.

Inone embodiment of the present disclosure, an expression
emay be defined to be oblivious if, during the evaluation of e,
every conditional expression evaluated is repeatable. If an
expression is oblivious, then its evaluation will follow the
same control flow branches in every possible environment.

In one embodiment of the present disclosure, all relocat-
able expressions may be oblivious. This property is simple to
establish with structural induction on the shape of relocatable
expressions. If a relocatable expression is repeatable, it is
oblivious. Otherwise, it suffices to note that in each syntactic
form listed in definitions 4 and 5, no unrepeatable values can
affect control flow.

Next, a key property in one embodiment of the present
disclosure may be established that allows the compiler to
extract the shape of relocatable expressions without aggres-
sive program analysis.

Repeatable Structure Property. Suppose a call expression
e=M.foo(el, . .. p, . . . ek) is relocatable, where all actual
parameters except p are repeatable, and p corresponds to a
dynamic parameter of M.foo oftype T. Assume the evaluation
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of e terminates without an exception, producing the stream
graph object g,. Now let e2=M.foo(el, . . . p2, .. . ek) be the
expression e, substituting any value p2 of type T for p. Then
evaluating e2 terminates without an exception, producing a
stream graph object g,. Furthermore, g, and g, have the same
stream graph structure.

Informally, this property may be established with an argu-
ment based on information flow. The body of M.foo may be
considered as a function with k inputs, where the i th input in,
is the dynamic parameter corresponding to actual parameter
p- In one embodiment of the present disclosure, the type
checking rules for dynamic parameters guarantee that no
statement in M.foo can be control-dependent on in,, and only
task constructions can be data dependent on in,. Thus the
effects of in, on the object resulting from evaluating either el
or e2 must be confined to task constructions. Thus the stream
graph structure must be repeatable.

This key property allows a system of the present disclosure
to evaluate relocatable expressions that produce stream
graphs at compile-time, substituting place-holders during
evaluation for any dynamic parameters. The structure of the
resultant stream graph does not depend on dynamic param-
eters—instead, dynamic parameters may only flow
untouched to task initializers. With this property, the compiler
can establish the stream graph structure for relocatable graphs
with a relatively simple concrete evaluator, which is
described below.

Nested Task Graphs: in Table 9 the method thirdDegree is
also decorated with a task qualifier. This qualifier adds addi-
tional constraints—in particular, a task method can only
execute a certain restricted class of task graphs that are iso-
lated and deterministic. These restrictions allow the Lime
program to execute task graphs while evaluating expressions
that construct task graphs, without losing the benefits of relo-
catable expressions. The constraints imposed by the task
qualifier may be a superset of constraints imposed by local.

Implementation

The following describes implementation factors associated
with design of compiler support to extract graph structure in
one embodiment of the present disclosure. Considerations
associated with repeatable expressions are presented, and
then considerations associated with partial evaluation for
relocatable expressions with unrepeatable sub-expressions
are presented.

In a functional language which represents programs as
values, a repeatable expression evaluator would not be chal-
lenging (e.g., eval e in Lisp). However, a programming lan-
guage considered in the present disclosure (e.g., Lime), e.g.,
an imperative language based on Java, does not represent
programs as values. Like a Java compiler, the Lime compiler
generates JVM bytecodes. So, the compiler can employ the
JVM to evaluate repeatable expressions at compile-time.

Namely, a compiler of the present disclosure in one
embodiment generates bytecode representations of repeat-
able expressions called snippets. The snippet evaluator imple-
mentation considers the following design factors:

1. How to manage the Java virtual machine runtime envi-

ronment when running the snippet evaluator;

2. How to translate the result of a snippet evaluation (an
Object or primitive value) to a useful compile-time rep-
resentation;

3. Relocatable expressions can include unrepeatable
dynamic parameters, and these cannot be evaluated at
compile time, so how the snippet evaluator performs the
implied partial evaluation task.
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Runtime environment for snippet evaluation

The program (e.g., Lime) compiler in one embodiment of
the present disclosure generates bytecode representations of
all user code before running any snippet evaluation. So the
snippet evaluator can run with a JVM classpath that includes
all the generated bytecode. This classpath reflects the antici-
pated runtime environment at the granularity of packages and
visible classes.

In order to reproduce within-class scoping of names that
appear in the expression, the compiler constructs a snippet
method which represents a repeatable expression. In one
embodiment of the present disclosure, a snippet method has
no parameters, and is declared in the class in which the
repeatable expression occurs. To build a snippet method, the
compiler of the present disclosure in one embodiment may
first creates a single return statement with a copy of the
expression. That is, if the expression is i+j, then the snippet
method starts out as

private static int snippetMethod12345( ) {return i+j;}

This method will not type-resolve, since i and j are vari-
ables with arbitrary bindings. The second step visits all the
names in the expression and determines that the correct i
and/or j will actually be in scope, or replays the declaration(s)
of'iorj inside the method. Since all names are resolved at this
point, this analysis can be done accurately.

From the definition of repeatability, any qualified names
(e.g. b.i) denote static fields. If a name refers to a static
repeatable field, then no additional steps are required, since
the scope already binds the name. If a simple name refers to a
local variable, the compiler in one embodiment of the present
disclosure replays the variable declaration inside the snippet
method. If a simple name refers to an instance field defined in
the encompassing class or one of its supertypes, then the
compiler in one embodiment of the present disclosure gener-
ates an equivalent local variable declaration in place of the
field declaration. When a variable or instance field declaration
is replayed, it might trigger transitive replay of other variables
or instance fields referenced in the declaration.

The replay strategy is sound for the following reasons. If
the snippet is based on a fully repeatable expression, i and j
must denote final variables or fields with explicit repeatable
initializations. If the expression contains unrepeatable task
initializers, they are replaced by placeholders (which have
repeatable behavior and don’t include name references).

Supporting non-static qualified names may complicate the
analysis, e.g., it is far more difficult to replay the sequence of
declarations backing such names since some segments rep-
resent objects whose creations have already occurred while
others are just field references. In general, one might not even
have the source for the class that defines the type of the object
or in which the object was created.

Interpreting Snippet Evaluation Results

Translating a runtime value back into a compile-time rep-
resentation is simplified by the fact that repeatable expres-
sions always produce programming language (e.g., Lime)
values, which are containment trees with no cycles or internal
aliases. Translation from runtime back to a compile-time
representation can use any of the following techniques.

Literal: If the value is of a type that has a literal represen-
tation, use the literal.

Default: If the value corresponds to the default value of its
type, use a standard Lime expression to produce that
default value.

Reconstruction: Inspect the value’s structure (which is
alias-free and acyclic) and build a compile-time repre-
sentation of that structure for use by later compiler
phases.
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Otherwise, if the value is an array and its elements can be
represented by the previous rules, construct the appro-
priate array literal.

The present implementation in one embodiment of the
present disclosure uses the reconstruction technique for the
stream graph structure and uses the literal or default technique
or their array generalizations for any repeatable task initial-
izers it finds. Unrepeatable task initializers (and those repeat-
able ones that can only be encoded by reconstruction) are
handled using the technique of the next section (Partial Evalu-
ation). More repeatable task initializers may be handled by
reconstruction, yielding more efficient code.

Partial Evaluation

The above defined relocatable expressions so that the
stream graph structure was required to be repeatable but task
initializers could be unrepeatable. The Repeatable Structure
Property allows to use the snippet evaluator for all relocatable
expressions, even with some unrepeatable parameters: any
legal value of the correct type can be substituted for a dynamic
parameter, and the resulting objects from evaluation will have
the same stream graph structure. So, in snippet evaluation, an
embodiment of the present disclosure may generate a unique
placeholder value for each unrepeatable parameter, and run
the snippet with an unmodified JVM. In the resulting object,
the placeholders may flow to task initialization parameters,
but (from the Repeatable Structure Property) cannot affect
any other aspect of the computation.

As aresult, the evaluated object must have the same stream
graph structure as the stream graph that will arise at runtime.
The implementation may or may not choose to evaluate
repeatable parameters that flow to task initializers. Dynamic
parameters will be clearly identified by placeholder values in
the resultant stream graph object. When interpreting the
resultant stream graph object, the compiler maps placeholder
values to the appropriate expressions in the generated code,
which causes dynamic parameters to flow to generated tasks
at runtime.

As discussed above, a programmer may write programs
that build stream graphs for programming a hardware circuit
(e.g., FPGA synthesis) using a programming language, e.g.,
an object oriented programming language, and associated
compiler incorporating the above described methodologies.
The programming language (an example of which was illus-
trated with reference to the Lime language), may support
stream graph construction using rich abstractions and control
flow constructs that comprise conditionals, loops, and recur-
sion. The language permits compact graph construction code
using a number of idioms which may be factored into library
methods. Graph construction may be parameterized in terms
of size via repeatable parameters, and function via tasks as
first-class values. The compiler succeeds in extracting the
task graphs and synthesizes the code into FPGA circuits.

Such programming language may handle multiple differ-
ent coding patterns in identifying and extracting stream
graphs. Examples of different coding patterns may include:

Recursive: Constructs a graph using recursion. The idiom
is useful for constructing a sequence of connected tasks.

Divide and conquer: A form of recursive graph construc-
tion for divide and conquer algorithms.

Map: Constructs a multi-task from a single task, and cur-
ries the task’s vector-position into the task worker
method. The map is useful for data- and task-parallel
multitasks that operate on partitioned streams.

Repeat: Constructs a multitask from one or more tasks,
currying the task’s vector-position into the task worker
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method. Unlike the map idiom where the tasks operate
on a partitioned stream, here every task operates on
identical values.

Manual: Constructs arbitrary acyclic graphs using the
manual task and connect API. The idiom is most useful
for irreducible graphs (e.g., butterfly) but is applicable
for reducible topologies as well (e.g., reduction tree).

In one embodiment of the present disclosure, the ability to
treat stream graphs and tasks as first-class objects may allow
to factor the graph construction idioms into library utility
methods. Examples are illustrated below.

Recursive

Graphs may be built using a recursive idiom. Table 10
shows an example that builds a sequence of tasks that perform
the encryption required by DES. In this sequence, all but the
last task behave identically modulo the curried encryption
key (a KeySchedule). The last stage performs a bit reversal,
indicated by the curried task initializer expression round
1=15.

At each level of the recursion, the graph grows by one task.
Although it is convenient to express graph construction in this
way, it is often easier to create an array of filters and chain
them together using a common utility method. This is illus-
trated in Table 10: makeFilters creates the array and the
library method Idioms.pipeline constructs the pipeline.

The graph extracted from ([recursive(new KeySchedule(),
15)]) is structurally equal to that constructed with the follow-
ing expression:

([Idioms.<bit[[64]]>pipeline(makeFilters(new Key-
Schedule( )))]).

TABLE 10

Recursive graph construction for DES.

task Filter<bit[[64]], bit[[64]]> recursive(task KeySchedule keys, int
round) {
if (round == 0)
return task des.F(keys.lookup(round), true, bit[[64]]);
else return recursive(keys, round — 1) =>
task des.F(keys.lookup(round), round != 15, bit[[64]]);

}
local Filter<bit[[64]], bit[[64]]>[[ ]] makeFilters(KeySchedule keys) {
final coder = new Filter<bit[[64]], bit[[64]]>[16];
for (int round = 0; round < 16; round++)
coder[round] = task des.F(keys.lookup(round), round != 15, bit[[64]]);
return new Filter<bit[[64]], bit[[64]]>[[ ]](coder);

public class Idioms {
static task <V extends Value> Filter<V,V> pipeline(Filter<V,V>[[ ]]
filters) {
var pipe = filters[0];
for (int i = 1; i < filters.length; i++)
pipe = pipe => filters[i];
return pipe;
¥
¥

Divide and Conquer

Divide and conquer extends the recursive idiom with
parameterized ordinal types. An example of a library utility is
presented which exploits first-class task values with higher-
order logic. Table 11 shows a generic method Idioms.dnc
parameterized by the type V of the values flowing between
tasks and the input size N. This method builds a graph that
divides the input recursively until the base case is reached,
connects a task t to perform the desired computation, and
inserts joiners to combine the results from each level of recur-
sion.
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The mergesort benchmark uses this idiom to construct its
task graph as in Idioms.<int, 16>dnc(task Merge.sort) where
task Merge.sort creates a task to sort a given (merged) array of
integers.

The example relies on programming language (Lime)
matchers which appear as # in the code. The simplest match-
ers (as in this example) perform aggregation to convert a
stream of V to Vm or deaggregation for the reverse conver-
sion. Lime provides type inference across the connect opera-
tor so that the left or right side of the conversion may be
omitted.

TABLE 11

Graph construction using divide and conquer.

public class Idioms {
static task <V extends Value, ordinal N> Task dnc(Task t) {
final HALF = N.size/2;
if (N.size > 2)
return (V #) =>
task split V[[2]] =>
task [ Idioms.<V, HALF>dnc(t), Idioms.<V, HALF>dnc(t) ] =>
task join V[[2]] =>
(# VIINT]) => t=> (# V;
else return t;
¥
¥

Map and Repeat

Iterative and recursive construction serve to construct
sequences of connected tasks. An alternate idiom uses mul-
titask constructors, which construct vectors of tasks not
directly connected to each other.

Table 12 shows an example, drawn from the beamformer
benchmark and simplified for exposition. The makeBeams
method initializes an array of tasks and then returns the mul-
titask composition of the array elements. The Lime map
operator ((@) permits a more concise encoding as

static task Task makeBeams(int N) {return task [@ make-
Beam(indices(N))];}

The details of the map and indices method are omitted.

Two classes of multitasks may be distinguished: those that
operate on partitioned streams and constructed using map,
and those that operate on a repeated stream. In the former, a
single stream is split and distributed to each ofthe tasks. In the
latter, the values in a stream are repeated k times immediately
before the splitter. The end result is that each of the connected
tasks observe and operate on the same values.

A library utility method may be implemented called Idi-
oms.repeat that accepts a multitask, and returns a graph hav-
ing a task that repeats values the required number of times,
and connects it to a splitter, multitask and joiner. The example
(Table 12) illustrates another feature of matchers (i.e., the
repeat count). The matcher repeats every value it consumes N
times on every invocation.

TABLE 12

Multitask construction example for map and repeat idioms.

public class Beamformer {
static task Task makeBeams(int N) {
var beams = new Task[N];
for (int b = 0; b < N; b++) beams[b] = makeBeam(b);
return task [ beams J;

static local Task makeBeam(int id) { return task Beamformer.formBeam
(id, float); }
static local float formBeam(int id, float val) { ... }

}
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TABLE 12-continued

Multitask construction example for map and repeat idioms.

public class Idioms {
static task <ordinal N, V extends Value> Task repeat(Filter<V,V>[[N]]
filters) {
return (V # V[[N]], repeat N.size) =>
task split V[[N]] => task [ filters ] => task join V[[N]];
¥

}

Manual

The preceding examples all exhibit reducible graph topolo-
gies. Other topologies may only be expressed with manual
connections. These include not only irreducible graphs, but
also use cases that are simply easier to express using a richer
programmatic interface. A manual connection API supported
by a programming language (e.g., the Lime manual connec-
tion API) may be provided or used. Using manual connection,
library utilities may be created to express a variety of graph
shapes. These may include butterfly networks, systolic arrays
and reduction trees. In each case, the library utilities establish
the desired shape, parameterized by a small number of values,
and allow the programmer to pass in tasks as first-class values
to connect internally.

A programming language (e.g., Lime)’s properties may be
relied on to encapsulate complex manual graph construction
algorithms in libraries using higher-order functions, while
still enjoying parameterized types and sizes, type safety, and
repeatable graph shapes. The ability to write the graph con-
struction code in the same language and semantic domain as
the rest of the application also means a single development
and debugging environment can be used. This is especially
helpful for the construction of irreducible graphs where the
code is relatively more complex compared to idioms illus-
trated above.

A compiler of the programming language (e.g., Lime) may
extract relocatable graphs (for hardware synthesis) from a
program code (e.g., code patterns examples illustrated
above). In one example, the extracted graphs (in Lime code)
may be synthesized (by a hardware-specific compiler) into
circuits suitable for programming a hardware (e.g., FPGA).
In one aspect, a hardware-specific compiler may partition a
task graph into the largest non-overlapping subgraphs, and
synthesize each partition independently. In another aspect, an
entire extracted graph may be compiled into one large circuit.

The graph extraction and relocation methodologies illus-
trated herein enable synthesizing task graphs into hardware
circuits (e.g., FPGA circuits) from high-level object-oriented
code. For instance, the stream graph construction may be
embedded in a general purpose object-oriented language.
Such language may also support irreducible stream graphs
constructed with complex code, which can still be synthe-
sized to an FPGA or the like.

Programming language constructs in one embodiment of
the present disclosure can be viewed as binding-time annota-
tions, which specify a division to drive oftf-line partial evalu-
ation of certain program constructs. The programming lan-
guage of the present disclosure may support solely off-line
specialization. The programming language of the present dis-
closure may target code generation for devices such as
FPGAs, where runtime specialization is not practical with
current synthesis technology. The programming language
may restrict the relevant code to oblivious expressions ame-
nable to off-line evaluation. In the partial evaluation litera-
ture, a program or expression is oblivious if the program
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always follows the same execution path (in terms of if/then/
else or other conditional execution constructs) in every pos-
sible execution.

In another aspect, the programming language’s binding
time annotations may be fully integrated into the type system,
which provides safe, modular checking. Additionally, the
programming language may restrict the static division to
oblivious code sequences, which can include holes forvalues,
but where dynamic values cannot affect control flow.

FIG. 3 is a flow diagram that illustrates a compiler method
of FIG. 1 in more detail, in one embodiment of the present
disclosure for extracting a stream graph. At 302, a program is
received. A program that is analyzed for stream graph extrac-
tion in one embodiment of the present disclosure may be
written using language extensions, annotations, or other
directives to permit the compiler to perform the processing
shown in FIG. 3. As discussed above, the representation of a
stream graph in the programming language may include
nodes that are immutable and connection operations that are
functional (producing a larger subgraph from smaller sub-
graphs without altering the smaller ones).

At 304, the compiler identifies one or more datatypes in the
program that are immutable and one or more methods that are
local. For identifying immutable datatypes and/or local meth-
ods, techniques described in co-pending and co-owned U.S.
patent application Ser. No. 12/870,980, filed Aug. 30, 2010,
entitled “EXTRACTION OF FUNCTIONAL SEMANTICS
AND ISOLATED DATAFLOW FROM IMPERATIVE
OBJECT ORIENTED LANGUAGES,” may be used. The
content of that application is incorporated herein by refer-
ence. Other technique may be used also.

At 306, the compiler also identifies one or more parameters
of one or more local methods that are intended for task ini-
tialization. Those parameters are also referred to herein as
being “dynamic.”

At 308, the compiler checks that task initialization param-
eters are not used in a way that affects a control flow within the
method (in which those parameters are used). One example
way of checking this, as described above, is to allow them to
appear only in stream graph node constructions in positions
that syntactically denote them as initializations, with all other
uses being disallowed. However, other forms of checking
may be employed.

At 310, the compiler identifies expressions that are repeat-
able, e.g., as defined above. In one aspect, repeatability is
defined entirely using immutability and localness as checked
at 308.

At 312, the compiler also identifies stream graph construc-
tions that are relocatable. For example, a stream graph con-
struction may be identified as being relocatable if they are
built from the nodes that are immutable and connection
operations that are functional. A stream graph constructions
may be also identified as being relocatable if they are repeat-
able except for the possible presence of task initializations,
which are allowed to be unrepeatable (e.g., see Definition 4
discussed above). In one aspect, a stream graph constructions
may be also identified as being relocatable even if the stream
graph construction may include calls to unrepeatable local
methods, as long as the unrepeatable parts are only passed as
task initialization parameters (e.g., see Definition 5 discussed
above).

In one embodiment, the compiler may automatically iden-
tify all possible relocatable stream graph constructions. In
another embodiment, a programmer may identify which sub-
graphs should be relocated, e.g., by using a predefined anno-
tation in the compiler.
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At 314, the compiler creates a modified form of the task
creation expression in which unrepeatable initializations are
replaced by marker values. For example, a default value for a
datatype may be used (e.g., the compiler language such as the
Lime language guarantees a default for every value type).
However, any method for distinguishing the unrepeatable
initializations from the repeatable ones may be used.

At 316, the compiler executes the task creation at compile
time within an environment that mimics the runtime environ-
ment and captures the stream graph that is produced. Because
unrepeatable initializations were marked prior to execution,
the markers appear in the result and it is known which initial-
izations are unrepeatable.

At 318, the stream graph captured at 316 is converted into
a suitable compiler intermediate representation and compiled
to produce the necessary bitfiles and/or other artifacts to
synthesize for the target platform, e.g., reconfigurable hard-
ware.

FIG. 4 illustrates a schematic of an example computer or
processing system that may implement a compiler system in
one embodiment of the present disclosure. The computer
system is only one example of a suitable processing system
and is not intended to suggest any limitation as to the scope of
use or functionality of embodiments of the methodology
described herein. The processing system shown may be
operational with numerous other general purpose or special
purpose computing system environments or configurations.
Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with the
processing system shown in FIG. 4 may include, but are not
limited to, personal computer systems, server computer sys-
tems, thin clients, thick clients, handheld or laptop devices,
multiprocessor systems, microprocessor-based systems, set
top boxes, programmable consumer electronics, network
PCs, minicomputer systems, mainframe computer systems,
and distributed cloud computing environments that include
any of the above systems or devices, and the like.

The computer system may be described in the general
context of computer system executable instructions, such as
program modules, being executed by a computer system.
Generally, program modules may include routines, programs,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. The computer system may be practiced in distributed
cloud computing environments where tasks are performed by
remote processing devices that are linked through a commu-
nications network. In a distributed cloud computing environ-
ment, program modules may be located in both local and
remote computer system storage media including memory
storage devices.

The components of computer system may include, but are
not limited to, one or more processors or processing units 12,
asystem memory 16, and a bus 14 that couples various system
components including system memory 16 to processor 12.
The processor 12 may include a compiler module 10 that
performs the methods described herein. The module 10 may
be programmed into the integrated circuits of the processor
12, or loaded from memory 16, storage device 18, or network
24 or combinations thereof.

Bus 14 may represent one or more of any of several types
of bus structures, including a memory bus or memory con-
troller, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus architec-
tures. By way of example, and not limitation, such architec-
tures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
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(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

Computer system may include a variety of computer sys-
tem readable media. Such media may be any available media
that is accessible by computer system, and it may include both
volatile and non-volatile media, removable and non-remov-
able media.

System memory 16 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) and/or cache memory or others. Computer
system may further include other removable/non-removable,
volatile/non-volatile computer system storage media. By way
of'example only, storage system 18 can be provided for read-
ing from and writing to a non-removable, non-volatile mag-
netic media (e.g., a “hard drive”). Although not shown, a
magnetic disk drive for reading from and writing to a remov-
able, non-volatile magnetic disk (e.g., a “floppy disk™), and an
optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In such instances, each
can be connected to bus 14 by one or more data media inter-
faces.

Computer system may also communicate with one or more
external devices 26 such as a keyboard, a pointing device, a
display 28, etc.; one or more devices that enable a user to
interact with computer system; and/or any devices (e.g., net-
work card, modem, etc.) that enable computer system to
communicate with one or more other computing devices.
Such communication can occur via Input/Output (I/O) inter-
faces 20.

Still yet, computer system can communicate with one or
more networks 24 such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(e.g., the Internet) via network adapter 22. As depicted, net-
work adapter 22 communicates with the other components of
computer system via bus 14. It should be understood that
although not shown, other hardware and/or software compo-
nents could be used in conjunction with computer system.
Examples include, but are not limited to: microcode, device
drivers, redundant processing units, external disk drive
arrays, RAID systems, tape drives, and data archival storage
systems, etc.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, a software embodiment (including firmware,
resident software, micro-code, etc.) or an embodiment com-
bining software and hardware aspects that may all generally
be referred to herein as a “circuit,” “module” or “system.”
Furthermore, aspects of the present invention may take the
form of a computer program product embodied in one or more
computer readable medium(s) having computer readable pro-
gram code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
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memory), a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain, or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages, a scripting language such
as Perl, VBS or similar languages, and/or functional lan-
guages such as Lisp and ML and logic-oriented languages
such as Prolog. The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention are described with refer-
ence to flowchart illustrations and/or block diagrams of meth-
ods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be under-
stood that each block of the flowchart illustrations and/or
block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
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ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The computer program product may comprise all the
respective features enabling the implementation of the meth-
odology described herein, and which—when loaded in a
computer system—is able to carry out the methods. Com-
puter program, software program, program, or software, in
the present context means any expression, in any language,
code or notation, of a set of instructions intended to cause a
system having an information processing capability to per-
form a particular function either directly or after either or both
of the following: (a) conversion to another language, code or
notation; and/or (b) reproduction in a difterent material form.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements, if any, in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

Various aspects of the present disclosure may be embodied
as a program, software, or computer instructions embodied in
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a computer or machine usable or readable medium, which
causes the computer or machine to perform the steps of the
method when executed on the computer, processor, and/or
machine. A program storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to perform various functionalities and methods
described in the present disclosure is also provided.

The system and method of the present disclosure may be
implemented and run on a general-purpose computer or spe-
cial-purpose computer system. The terms “computer system”
and “computer network™ as may be used in the present appli-
cation may include a variety of combinations of fixed and/or
portable computer hardware, software, peripherals, and stor-
age devices. The computer system may include a plurality of
individual components that are networked or otherwise
linked to perform collaboratively, or may include one or more
stand-alone components. The hardware and software compo-
nents of the computer system of the present application may
include and may be included within fixed and portable
devices such as desktop, laptop, and/or server. A module may
be a component of adevice, software, program, or system that
implements some “functionality”, which can be embodied as
software, hardware, firmware, electronic circuitry, or etc.

The embodiments described above are illustrative
examples and it should not be construed that the present
invention is limited to these particular embodiments. Thus,
various changes and modifications may be effected by one
skilled in the art without departing from the spirit or scope of
the invention as defined in the appended claims.

We claim:

1. A method for extracting a stream graph for a hardware
circuit from a program written in a programming language,
comprising:

receiving a program;

analyzing the program, by a processor, for one or more

constructs in the programming language that builds the
stream graph for programming the hardware circuit, a
node in the stream graph representing a computation to
be performed, the computation expressed in the pro-
gramming language, an edge in the stream graph repre-
senting data flowing from the node to another node in the
stream graph; and

outputting one or more artifacts representing the stream

graph,

wherein the stream graph can be compiled for the hardware

circuit to execute and produce a result with different
node initialization values and different streaming data
values that are presented in an execution of the program
not known at compile time, and

wherein the stream graph can be built using recursive com-

putation and the connectivity of the stream graph can be
arbitrary,

the analyzing comprising identifying one or more stream

graph constructions that are relocatable,

wherein the one or more stream graph constructions are

identified as relocatable ifthe one or more stream graphs
constructions are built from one or more immutable
nodes and one or more connections that do not alter
nodes of the one or more stream graphs.

2. The method of claim 1, wherein the analyzing com-
prises:

identifying one or more expressions that are repeatable.

3. The method of claim 2, wherein the one or more expres-
sions are identified as being repeatable ifthe expressions have
immutable datatypes.
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4. The method of claim 2, wherein the one or more expres-
sions are identified as being repeatable if the expressions are
local methods.

5. The method of claim 1, wherein the one or more stream
graph constructions are identified as relocatable if computa-
tions associated with the one or more stream graph construc-
tions are repeatable.

6. The method of claim 1, wherein the one or more stream
graph constructions are identified as relocatable if computa-
tions associated with the one or more stream graph construc-
tions are repeatable, except for a presence of one or more task
initializations.

7. The method of claim 1, wherein a compiler automati-
cally identifies all relocatable stream graph constructions in
the program.

8. The method of claim 1, wherein one or more of relocat-
able stream graph constructions are identified in the program
manually.

9. The method of claim 1, wherein the analyzing comprises
creating a modified form of a task creation expression,
wherein one or more unrepeatable initializations are replaced
by one or more marker values.

10. The method of claim 9, wherein the analyzing further
comprises executing the modified form of the task creation
expression at compile time within an environment that mim-
ics a runtime environment, and capturing a stream graph that
is produced from the executing.

11. The method of claim 10, wherein the analyzing further
comprises converting the captured stream graph into the arti-
facts, the artifacts comprising at least hardware description
language to synthesize for the hardware circuit.
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12. A method for extracting a stream graph for a hardware
circuit from a program written in a programming language,
comprising:

receiving a program;

analyzing the program, by a processor, for one or more

constructs in the programming language that builds the
stream graph for programming the hardware circuit, a
node in the stream graph representing a computation to
be performed, the computation expressed in the pro-
gramming language, an edge in the stream graph repre-
senting data flowing from the node to another node in the
stream graph; and

outputting one or more artifacts representing the stream

graph,

wherein the stream graph can be compiled for the hardware

circuit to execute and produce a result with different
node initialization values and different streaming data
values that are presented in an execution of the program
not known at compile time, and

wherein the stream graph can be built using recursive com-

putation and the connectivity of the stream graph can be
arbitrary,

the analyzing comprising identifying one or more stream

graph constructions that are relocatable,

wherein the one or more stream graph constructions are

identified as relocatable even if the one or more stream
graph constructions include one or more calls to one or
more unrepeatable local methods, provided that an unre-
peatable part is only passed as one or more task initial-
ization parameters.
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